
simplifies the load-balancing, data
movement, unstructured-communica-
tion, and memory usage difficulties that
arise in dynamic applications such as
adaptive finite-element methods, parti-
cle methods, and crash simulations.
Zoltan’s data-structure-neutral design
also lets a wide range of applications use
it without imposing restrictions on ap-
plication data structures. Its object-
based interface provides a simple and
inexpensive way for application devel-
opers to use the library and researchers
to make new capabilities available under
a common interface.

Zoltan provides tools that help appli-
cation developers without imposing
strict requirements on them. For exam-
ple, it includes a suite of parallel parti-
tioning algorithms and data migration
tools that redistribute data to reflect,
say, changing processor workloads.
Zoltan also includes distributed data di-
rectories and unstructured communica-
tion services that let applications per-
form complicated communication using
only a few simple primitives. To simplify
debugging of dynamic memory usage,
Zoltan provides dynamic memory man-
agement tools that enhance common
memory allocation functions. In this ar-
ticle, we describe Zoltan’s features and
ways to use it in dynamic applications.

Zoltan software design
Our design of the Zoltan library does

not restrict it to any particular type of
application. Rather, Zoltan operates on
uniquely identifiable data items that we
call objects. For example, in finite-ele-
ment applications, objects might be el-
ements or nodes of the mesh. In parti-
cle applications, objects might be
particles. In linear solvers, objects
might be matrix rows. Each object
must have a unique global identifier
(ID) represented as an array of un-
signed integers. Common choices in-
clude global numbers for elements
(nodes, rows, particles, and so on) that
already exist in many applications, or a
structure consisting of an owning
processor number and the object’s lo-
cal-memory index. Objects might also
have local (to a processor) IDs that do
not have to be unique globally. Local
IDs such as addresses or local-array in-
dices of objects can improve the per-
formance (and convenience) of Zoltan’s
interface to applications.

To make Zoltan easy to use, we do
not impose any particular data struc-
ture on an application, nor do we re-
quire an application to build a particu-
lar data structure for Zoltan. Instead,
Zoltan uses a callback function inter-
face in which the tool queries the ap-

plication for needed data. The applica-
tion must provide simple functions
that answer these queries.

For example, Figure 1 shows how
Zoltan’s callback function interface
works for performing dynamic load bal-
ancing in an application. An application
starts Zoltan (Zoltan_Initialize)
and allocates the memory it needs
(Zoltan_Create). Through calls to
Zoltan_Set_Fn, the application passes
pointers to its callback functions to
Zoltan. It also selects a partitioning
method (Zoltan_LB_Set_Method)
and sets appropriate parameters for load
balancing(Zoltan_LB_Set_Param).
Then, within the main computation
loop, the application calls Zoltan_LB_
Balance to compute a new partition of
its data.

As a first step in Zoltan_LB_Bal-
ance, Zoltan must build the data struc-
tures needed for the particular parti-
tioning method selected. It calls the

90 1521-9615/02/$17.00 © 2002 COMPUTING IN SCIENCE & ENGINEERING

ZOLTAN DATA MANAGEMENT SERVICES
FOR PARALLEL DYNAMIC APPLICATIONS
By Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and
Courtenay Vaughan

THE ZOLTAN LIBRARY IS A COLLECTION OF DATA MANAGE-

MENT SERVICES FOR PARALLEL, UNSTRUCTURED, ADAP-

TIVE, AND DYNAMIC APPLICATIONS THAT IS AVAILABLE AS OPEN-

SOURCE SOFTWARE FROM WWW.CS.SANDIA.GOV/ZOLTAN. IT

Editor: Paul F. Dubois, paul@pfdubois.com

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

Zoltan Details

The Zoltan library’s toolkit includes
parallel partitioning algorithms, data
migration tools, distributed directo-
ries, and unstructured communica-
tion and memory management
packages. It has many key features
for developers:

• Its source code is freely available at
www.cs.sandia.gov/Zoltan.

• It’s callable from C, C++, and F90
(but is implemented in C).

• It uses MPI communication.

MARCH/APRIL 2002 91

Café Dubois

XP Torture Test
Both my kids’ computers had a Windows XP upgrade

coming to them. My daughter is at college where I can’t
help her when things break, and my son is an operating sys-
tem programmer’s worst nightmare. Therefore I decided,
despite my opposition to the XP “activation” requirement,
to do the upgrades because of the alleged improvement in
reliability. There aren’t many areas of life like this one, where
we buy another product from someone because the last
one they sold us is so defective.

My daughter brought her Vaio home for Christmas. Sony’s
upgrade included a second CD that prepared the machine,
instructed you to do the upgrade, and then returned to re-
place even more of your software. They did a good job and it
all worked, but it took about two hours. For some reason, it
did not install the network configuration correctly, somehow
disabling Dubois Castlenet and angering an impatient mob.

In my son’s case, he had worked Windows Me into an in-
teresting state where every attempt to open a folder
crashed Explorer. Figuring that the upgrade was not likely to
work very well in such an environment, I reformatted his
drive and reinstalled from his original Windows 98-2e OEM
disks. After the usual search team was sent out to find the
product key, I was able to start the 98-2e -> XP upgrade. An
additional 90 minutes of sheer boredom punctuated by mo-
ments of terror later, I had a working machine with no
sound. Another two hours were spent figuring that out.

Both machines later announced that the DVD decoder was toast
and that I should click here to go get a new one. My son’s manufac-
turer charged me $30 for it. I was too tired to sue.

A friend who went through upgrading on his machine said
he only got “a few heart-stopping blue screens of death” dur-
ing the process.

Cavaet upgraditor. Carpe monopolist.

Building
I spend a lot of time at work wrestling with our build. Our

product is an open-source, Python-based set of tools for sci-
entific analysis and visualization with a special emphasis on
climate data (cdat.sf.net). As such it spans many directories
and also requires the building software we need such as
Python, zlib, Tcl, Tk, and readline on a variety of machines.
Each of these pieces has its own configuration procedures.

Until Python got its “Distutils” that help you build Python
packages across platforms, things were in an untenable
mess. But now we can build our packages pretty well with
just a few frightening problems. Most of these problems fall
into one of these categories:

• Headers and libraries from the software we use, such as
X11, do not have standardized locations.

• Some OSs include different things than others.

• Some OSs come with versions of things that we use but
they are older versions that we cannot use and must some-
how avoid.

• Command lines for compilers and linkers are not standardized.
• Make is not standardized.
• Many users don’t read the README before installing.
• Cross-platform portability to Windows and Mac seems even

farther out of reach.

Here are some resources for dealing with this problem:
• Autoconf (www.gnu.org/manual/autoconf) is widely used

but is hard to learn and use; too hard for scientists, I think.
Am I wrong?

• Imake (www.dubois.ws/software/imake-stuff) was some-
thing my group tried for a year or so but again it was too
hard for scientists. (This Web site by Paul Dubois is not my
Web site. As Yoda said, there is another.)

• Cons (www.dsmit.com/cons) is a Perl-based system that
some people think highly of.

• SCons (www.scons.org) is an implementation of the win-
ning design for a build tool in the Software Carpentry con-
test. It is just getting going. I think it has a lot of potential
because it lets you write the configuration file (the equiva-
lent of a Makefile) in Python. SCons is supposed to “fix
what is wrong with Cons.” I tried SCons and it built a C
code on Windows without a problem. That is usually a ter-
ror-filled process without building a Visual Studio project.

• JAM / MR (perforce.com/jam/jam.html) is another system
that has attracted an enthusiastic audience. I haven’t had
time to look into it, but the same people wrote Perforce, my
favorite source-code control system, so I know they live in
the real world of having a complex multiplatform product.

Send me your tales of woe and success and maybe we can
together figure out what works. Meantime, I’ll time how long
it takes my son to destroy XP.

92 COMPUTING IN SCIENCE & ENGINEERING

registered callback functions to build its
data structures. It then performs the par-
titioning and returns lists of objects to be
imported to and exported from the
processor for the new decomposition. At
no time does the application developer
have to build (or debug) complicated
data structures for use within Zoltan.

To keep the application interface
simple, we use a small set of callback
functions and make them easy to write
by requesting only information that is
easily accessible to applications. For
the most basic partitioning algorithms,
Zoltan requires only four callback
functions. These functions return the
number of objects owned by a proces-
sor, a list of weights and IDs for owned
objects, the problem’s dimensionality,
and a given object’s coordinates. (Fig-
ure 2 includes simple examples of some
of these callback functions.) More so-
phisticated graph-based partitioning

algorithms require only two additional
callback functions, which return the
number of edges per object and edge
lists for objects.

Zoltan’s parallel data services
Zoltan provides a toolkit of parallel

data services for dynamic and unstruc-
tured applications. These services are
layered in Zoltan so that application
developers can use as much or as little
of the toolkit as desired. Zoltan’s paral-
lel partitioning tools are efficient algo-
rithms for dividing an application’s data
among processors while trying to min-
imize interprocessor communication.
Incremental partitioning algorithms—
algorithms that account for data’s cur-
rent location in determining their new
location—are included to keep data
movement costs low. Zoltan also in-
cludes data migration utilities, distrib-
uted data directories, an unstructured

communication package, and a dy-
namic memory management package.

Parallel partitioning and
dynamic load balancing

In our experience, no single parti-
tioning strategy is effective for all paral-
lel computations. Some applications re-
quire partitions based only on the
problem’s workloads and geometry;
others benefit from explicit considera-
tion of dependencies between objects.
Some applications require the highest-
quality partitions possible, regardless of
the cost to generate them; others can
sacrifice some quality so long as new
partitions can be generated quickly. For
some applications, the cost to relocate
data is prohibitively high, so incremen-
tal partitioning algorithms are needed;
other applications can tolerate greater
remapping costs. Most important, ap-
plication developers might not know in
advance which strategies work best in
their applications, so they need a conve-
nient means of comparing algorithms.

We provide three classes of parallel
partitioning algorithms in the Zoltan li-
brary: geometric bisection, space-filling
curves, and graph partitioning. Each
class includes several different algo-
rithms. Once users write the callback
functions for each class, switching be-
tween classes and methods requires only
a call to Zoltan_LB_Set_Method with
the new algorithm name. In this way,
developers can easily compare algo-
rithms within their applications to find
the strategy that works best for them.

Geometric bisection. Recursive coordi-
nate bisection is conceptually the sim-
plest partitioning algorithm in Zoltan.1

RCB divides a problem’s work into two
equal parts using a cutting plane or-
thogonal to a coordinate axis and assigns
objects to subdomains based on their
geometric positions relative to the cut-
ting plane (see Figure 3). It then recur-

S C I E N T I F I C P R O G R A M M I N G

Initialize Zoltan
(Zoltan_Initialize,

Zoltan_Create)

Select partitioning method
(Zoltan_LB_Set_Method,

Zoltan_Set_Params)

Register callback functions
(Zoltan_Set_Fn)

Repartition
(Zoltan_LB_Balance)

Compute

Move data
(Zoltan_Help_Migrate)

Clean up
(Zoltan_Destroy)

Application

Zoltan_LB_Balance:

• Call registered callback function

• Build data structures
 for method
• Compute new decomposition

• Return import/export lists

Zoltan_Help_Migrate:

• Call packing callback function for
 exports
• Send exports
• Receive imports
• Call unpacking callback function
 for imports

Zoltan

Figure 1. An example shows how to use Zoltan’s callback function interface for
parallel partitioning in applications. The application (left) initializes Zoltan, selects a
partitioning method, and passes pointers to its callback functions to Zoltan. When
parallel partitioning is invoked, Zoltan (right) uses the callback functions to build its
data structures to perform partitioning. A similar callback function interface helps
migrate data between processors after a new partition is computed.

MARCH/APRIL 2002 93

sively cuts the resulting subdomains un-
til the number of subdomains is equal to
the number of processors. Recursive in-
ertial bisection (RIB) is a variant of RCB
that chooses cutting planes orthogonal
to the principle axes of the geometry,
rather than to the coordinate axes.2,3

RCB is effective for many applica-
tions because it maintains geometric lo-
cality of objects in processors; it is also
fast and implicitly incremental (small
changes in workloads produce only
small changes in the decomposition). It
is widely used in crash simulations and
particle simulations because it assigns
physically close surfaces or particles to
a single processor. Figure 4 shows an
adaptive mesh-refinement application
that uses RCB to repartition after local
refinement. RCB assigns parent and
child elements to the same processor,
preventing the need for communication
between mesh levels.

Space-filling curves (SFC). Researchers
have used space-filling curves (invented
in the 1890s by Peano and Hilbert) for
partitioning in gravitational simulations,
smoothed-particle hydrodynamics, and
adaptive finite-element methods. Like
RCB, SFC partitioners rely only on the
weights and geometric coordinates of ob-
jects. Figure 5 shows how the SFC algo-
rithm works. The SFC partitioner refines
the computational domain in Figure 5a
into subregions of a desired granularity
(for example, one subregion per object).
A subregion’s weight is the sum of the
workloads of all objects in that subregion.
The partitioner then passes an SFC
through the subregions, mapping a mul-
tidimensional domain to a one-dimen-
sional line (see Figure 5b). The parti-
tioner cuts the line into equally weighted
segments and assigns all objects along a
segment to a single processor (see Figure
5c). Like RCB, SFC partitioning is fast
and incremental and assigns geometri-
cally close objects to a single processor.

Zoltan includes several variants of
SFC partitioning. Octree partitioning
explicitly builds the tree representing
the refinement of a domain into subre-
gions; traversals of the tree produce
SFCs.4 Binned SFC partitioning effec-
tively lets several objects exist in a sin-
gle subregion; adaptive refinement of

the domain efficiently obtains the de-
sired granularity (see the user’s guide at
www.cs.sandia.gov/Zoltan). Refine-
ment tree partitioning is designed
specifically for adaptive mesh-refine-
ment applications.5 It uses parent–child
relationships rather than geometric co-
ordinates to construct a tree that re-

int Number_Owned_Nodes;
struct Node_Type {

 double Coordinates[3];
 float Weight;
 int Global_ID_Num;
 } Nodes[MAX_NODES];

void owned_objects_callback(void *data,
 int num_gid_entries, int num_lid_entries;
 ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int wgt_dim, float *obj_wgts,
 int *ierr)
{
int i;
 /* return global node numbers as global_ids. */
 /* return index into Nodes array for local_ids. */
 for (i = 0; i < Number_Owned_Nodes; i++)[
 global_ids[i] = Nodes[i].Global_ID_Num;
 local_ids[i] = i;
 obj_wgts[i] = Nodes[i].Weight;
 }
 *ierr = ZOLTAN_OK;
}

void coordinates_callback(void *data,
 int num_gid_entries, int num_lid_entries,
 ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 double *geom_vec, int *ierr)
{
 /* use local_id to index into the Nodes array. */
 geom_vec[0] = Nodes[local_id[0]].Coordinates[0];
 geom_vec[1] = Nodes[local_id[0]].Coordinates[1];
 geom_vec[2] = Nodes[local_id[0]].Coordinates[2];
 *ierr = ZOLTAN_OK;
}

Figure 2. Example callback functions for a simple mesh-based application. Finite-
element nodes are the objects to be passed to Zoltan. The function owned_objects_
callback returns a list of node weights and IDs for each node owned by a processor.
The function coordinates_callback returns a given node’s coordinates.

3rd

3rd

3rd

3rd

2nd

2nd

1st cut Figure 3. A diagram of cuts made
during recursive coordinate
bisection partitioning (RCB).
Recursive cuts orthogonal to
the coordinate axes divide a
domain’s work into evenly
sized subdomains.

94 COMPUTING IN SCIENCE & ENGINEERING

flects the domain’s refinement; traver-
sals of this tree also produce SFCs.

Graph partitioning. In graph parti-
tioning algorithms, the problem to be
partitioned is represented as a weighted
graph. The graph’s weighted nodes rep-
resent the objects to be partitioned (see
Figure 6). Graph edges represent de-
pendencies between objects and serve
as an approximation of communication
costs. Graph partitioning algorithms
divide the graph to assign roughly equal
nodal weight to partitions while at-
tempting to minimize the weight of
edges cut by partition boundaries.

Zoltan provides graph partitioning

through interfaces to the popular graph-
partitioning packages ParMETIS and
Jostle.6,7 Both ParMETIS and Jostle
provide parallel implementations of the
multilevel graph-partitioning approach
pioneered in Chaco.8,9 Multilevel algo-
rithms first coarsen an input graph, with
coarse nodes representing clusters of in-
put-graph nodes. The coarse graph is
easy to partition. The multilevel algo-
rithms then project this coarse partition
back to the input graph, with local im-
provements of the partition performed
at each finer graph level. This approach
produces high-quality partitions for
many applications (see Figure 7). How-
ever, multilevel graph partitioning is
more expensive than the geometric
methods described earlier, and the par-
titions produced are not incremental.

ParMETIS and Jostle also include dif-
fusive graph-partitioning algorithms.10

Diffusive algorithms move work from
heavily loaded processors to more lightly
loaded neighboring ones. The problem’s
graph helps determine which objects
should be moved to which neighbors.
Diffusive algorithms generate partitions
whose quality can degrade over several

invocations of the partitioning algo-
rithm. However, they are fast and incre-
mental and can be effective for several
dynamic applications.

Data migration tools
A complicated part of dynamic repar-

titioning is the need to move data from
old processors to new ones. This data
migration requires deletions and inser-
tions from the application data struc-
tures as well as communication be-
tween the processors. A general-
purpose library such as Zoltan can do
little to help manipulate application
data structures, but it can help commu-
nicate object data among processors.

To help an application with data mi-
gration, Zoltan requires an application
to supply a callback function that packs
a given object’s data into a communi-
cation buffer. A function that unpacks
an object’s data from a communication
buffer must also be supplied by the ap-
plication. Zoltan uses these callback
functions just as it used callback func-
tions for repartitioning in Figure 1. For
each object to be exported, Zoltan calls
the packing function to load commu-

S C I E N T I F I C P R O G R A M M I N G

Figure 4. An RCB decomposition for an
adaptive mesh-refinement application.
Colors indicate processor assignments.
(Image courtesy of Carter Edwards and
his colleagues at Sandia National
Laboratories.)

9

20

19

18

17

16

15

14

13
12

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

13
12

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

13
12

1110

8

7

6
5

4

321

(b) (c)(a)

Figure 5. Space-filling curve partitioning for four processors: (a) the original domain with particles to be partitioned; (b) the
refined domain with space-filling curve (red) and linear ordering of particles; and (c) a partition of the linear ordering to assign
an equal number of particles to processors.

MARCH/APRIL 2002 95

nication buffers, performs all commu-
nication needed to move the data, and
then calls the unpacking function to
load that object’s data into the data
structures on its new processor.

Distributed data directories
Dynamic applications often need to

locate off-processor information. After
repartitioning, a processor might need
to rebuild ghost cells and lists of objects
to be communicated. It might know
which objects it needs but not where
they are. To help locate off-processor
data, Zoltan includes a distributed data
directory algorithm based on Ali Pinar’s
rendezvous algorithm.11 Figure 8 shows
how to use the directory. Processors
register their owned objects’ IDs along
with their processor number in a direc-
tory (by calling Zoltan_DD_Update).
This directory is distributed evenly
across processors predictably (through
either a linear decomposition of the IDs
or a hashing of IDs to processors).
Then, other processors can obtain a
given object’s processor number by
sending a request for the information to
the processor holding the directory en-
try (by calling Zoltan_DD_Find).

Unstructured communication
library

Unlike static applications where
communication patterns remain fixed
throughout the computation, dynamic
applications can have complicated,
changing communication patterns. For
example, after adaptive mesh refine-
ment, new communication patterns
must reflect dependencies between
newly created elements. Multiphysics
simulations, such as crash simulations,
might require complicated communi-
cation patterns to transfer data be-

tween decompositions for different
simulation phases.

Zoltan provides an unstructured
communication package to simplify
communication. It generates a com-
munication plan based on the number
of objects to be sent and their destina-
tion processors. This plan includes in-
formation about both the sends and re-
ceives for a given processor. The plan
can be used and reused throughout the
application or destroyed and rebuilt
when communication patterns change.
It can also be used in reverse to return

Figure 6. A representation of a
triangular finite-element mesh as a
graph (red) for graph partitioning.
Graph nodes represent mesh elements;
graph edges represent shared element
faces.

Figure 7. A multilevel graph-based partition of a finite-element mesh for six
processors. Colors represent processor assignments of finite-element nodes.
(Mesh courtesy of Steve Hammond, NCAR.)

Allocate memory for distributed directory
(Zoltan_DD_Create)

Register owned objects and/or update
processor assignments of migrated objects

(Zoltan_DD_Update)

Find processor assignments of needed objects
(Zoltan_DD_Find)

Free memory used by distributed directory
(Zoltan_DD_Destroy)

Figure 8. An outline of
distributed data directory
usage. Once created,
directories can be updated
and used throughout an
application to reflect, say,
changing processor
assignments due to
dynamic load balancing.

96 COMPUTING IN SCIENCE & ENGINEERING

data to requesting processors. The
package includes simple communica-
tion primitives that insulate the user
from details of sends and receives.

Figure 9 shows how to use the com-
munication package to transfer data
between two different meshes in a
loosely coupled physics simulation.
This crash simulation uses a static
graph-based decomposition generated
by Chaco (left) for the finite-element
analysis and a dynamic RCB decompo-
sition (right) for contact detection.
Through a call to Zoltan_Comm_Cre-
ate, the application obtains a commu-
nication plan (built by Zoltan) that de-
scribes data movement between the
two decompositions. Using the plan,
the application can transfer data be-
tween the graph-based and RCB de-
compositions through calls to
Zoltan_Comm_Do and Zoltan_Comm_
Do_Reverse.

Dynamic memory management
package

Dynamic applications rely heavily on
the ability to allocate and free memory
as needed. After repartitioning, for ex-
ample, new memory is needed for im-

ported objects, and exported objects’
memory is freed. Memory leaks and
invalid memory accesses are common
in developing software. Although many
software development tools let users
track memory bugs, these tools are of-
ten not available on state-of-the-art
parallel-computing platforms. Thus,
simple in-application debugging tools
can be beneficial.

Zoltan’s memory management pack-
age includes wrappers around malloc
and free that provide enhanced de-
bugging capability for memory man-
agement. The arguments to these
wrappers are identical to those passed
to malloc and free, so they are easy to
use in applications. For each malloc,
the memory management package
records the line number and function
name of where the allocation took
place. When a location is freed, its al-
location record is removed. Thus,
tracking memory leaks can be simpli-
fied by asking the memory manage-
ment package to print its list of un-
freed memory along with the
source-code location from which it
was allocated. Statistics about memory
allocations and frees are also available.

A lthough we designed Zoltan to be
a general-purpose tool for appli-

cations, it has proven valuable to us as
a research testbed for new software de-
velopment. By allowing easy compari-
son of partitioning algorithms, Zoltan
is ideal for implementing and testing
new load-balancing strategies such as
multiconstraint geometric partitioning
strategies. Its flexible design lets us eas-
ily add new technologies (such as
graph-coloring and graph-matching al-
gorithms) to Zoltan. We are building a
layer within Zoltan to provide parti-
tioning and data services for heteroge-
neous computing architectures.

Acknowledgments
We thank Steve Attaway, Carter Ed-

wards, Robert Leland, Ali Pinar, Steve
Plimpton, Alex Pothan, Robert Preis,
and John Shadid for their discussions,
ideas, and color figures.

References
1. M. Berger and S. Bokhari, “A Partitioning

Strategy for Nonuniform Problems on Multi-
processors,” IEEE Trans. Computers, vol. C-36,
1989, pp. 279–301.

S C I E N T I F I C P R O G R A M M I N G

Figure 9. A demonstration of Zoltan’s unstructured communication package for loosely coupled physics. In this example, communication
primitives simplify data mapping between two different decompositions. The left side shows graph-based decomposition; the right,
RCB decomposition. (Image courtesy of Steve Attaway and his colleagues at Sandia National Laboratories.)

Zoltan_Comm_DoZoltan_Comm_Do

Zoltan_Comm_Do_ReverseZoltan_Comm_Do_Reverse

2. H. Simon, “Partitioning of Unstructured
Problems for Parallel Processing,” Computing
Systems in Eng., vol. 2, nos. 2–3, 1991, pp.
135–148.

3. V. Taylor and B. Nour-Omid, “A Study of the
Factorization Fill-in for a Parallel Implementa-
tion of the Finite Element Method,” Int’l J.
Numerical Methods Eng., vol. 37, 1994, pp.
3809–3823.

4. R. Loy, Adaptive Local Refinement with Octree
Load-Balancing for the Parallel Solution of
Three-Dimensional Conservation Laws, doctor-
al dissertation, Dept. of Computer Science,
Rensselaer Polytechnic Inst., 1998.

5. W. Mitchell, “A Comparison of Three Fast
Repartition Methods for Adaptive Grids,” Proc.
9th SIAM Conf. Parallel Processing for Scientific
Computing, SIAM, Philadelphia, 1999.

6. G. Karypis, K. Schloegel, and V. Kumar,
ParMETIS: Parallel Graph Partitioning and
Sparse Matrix Ordering Library, tech. report
97-060, Dept. of Computer Science, Univ. of
Minnesota, Minneapolis, 1997.

7. C. Walshaw, M. Cross, and M. Everett,
“Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes,” J. Parallel
and Distributed Computing, vol. 47, no. 2, 15
Dec. 1997, pp. 102–108.

8. B. Hendrickson and R. Leland, The Chaco
User’s Guide, version 2.0, tech. report SAND
94-2692, Sandia Nat’l Laboratories,
Albuquerque, N.M., 1994.

9. B. Hendrickson and R. Leland, “A Multilevel Al-
gorithm for Partitioning Graphs,” Proc. Super-
computing ’95, ACM Press, New York, 1995.

10. G. Cybenko, “Dynamic Load Balancing for
Distributed Memory Multiprocessors,” J.
Parallel and Distributed Computing, vol. 7,
no. 2, 1989, pp. 279–301.

11. A. Pinar, Combinatorial Algorithms in Scientific
Computing, doctoral dissertation, Dept. of
Computer Science, Univ. of Illinois, Urbana-
Champaign, 2001.

Karen Devine is the principal investigator for the Zoltan project. Her interests include parallel

partitioning, adaptive numerical methods, and software development. She received her PhD in

computer science from Rensselaer Polytechnic Institute. Contact her at the Computation,

Computers, and Mathematics Center, Sandia Nat’l Labs, Albuquerque, NM 87185-1111;

kddevin@sandia.gov.

Erik Boman has a PhD in scientific computing and computational mathematics from Stanford

University. His technical interests include scientific computing, numerical linear algebra, and

combinatorial algorithms. Contact him at the Computation, Computers, and Mathematics

Center, Sandia Nat’l Labs, Albuquerque, NM 87185-1111; egboman@sandia.gov.

Robert Heaphy has a PhD in physics from the University of New Mexico. His research interests

include the development of adaptive real-time control systems and software development for

massively parallel systems. Contact him at the Computation, Computers, and Mathematics

Center, Sandia Nat’l Labs, Albuquerque, NM 87185-1111; rheaphy@sandia.gov.

Bruce Hendrickson received a PhD in computer science from Cornell University. His research

interests include algorithms and software tools for high-performance scientific computing. Contact

him at the Computation, Computers, and Mathematics Center, Sandia Nat’l Labs, Albuquerque,

NM 87185-1111; bahendr@sandia.gov.

Courtenay Vaughan received his PhD in applied mathematics from the University of Virginia. His

research focus is parallel computing. Contact him at the Computation, Computers, and

Mathematics Center, Sandia Nat’l Labs, Albuquerque, NM 87185-1111; ctvaugh@sandia.gov.

Submissions: Send two copies, one word-processed file and one PostScript file, of articles and proposals to Francis Sullivan, Editor in Chief, CiSE, 10662 Los
Vaqueros Circle, Los Alamitos, CA 90720-1314; cise@computer.org. Submissions should not exceed 6,000 words and 10 references. All submissions are subject
to editing for clarity, style, and space.

Editorial: Unless otherwise stated, bylined articles and departments, as well as product and service descriptions, reflect the author’s or firm’s opinion.
Inclusion in CiSE does not necessarily constitute endorsement by the IEEE, the AIP, or the IEEE Computer Society.

Circulation: Computing in Science & Engineering (ISSN 1521-9615) is published bimonthly by the AIP and the IEEE Computer Society. IEEE Headquarters,
Three Park Ave., 17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los Ala-
mitos, CA 90720-1314, phone +1 714 821 8380; IEEE Computer Society Headquarters, 1730 Massachusetts Ave. NW, Washington, DC 20036-1903; AIP
Circulation and Fulfillment Department, 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502. Annual subscription rates for 2001: $40 for Com-
puter Society members (print only) and $52 for AIP member society members (print plus online). For more information on other subscription prices, see
http://computer.org/subscribe or http://ojps.aip.org/cise/subscrib.html. Back issues cost $10 for members, $20 for nonmembers. This magazine is
available on microfiche.

Postmaster: Send undelivered copies and address changes to Circulation Dept., Computing in Science & Engineering, PO Box 3014, Los Alamitos, CA
90720-1314. Periodicals postage paid at New York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 0605298. Printed in the USA.

Copyright & reprint permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of US
copyright law for private use of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For other copying, reprint, or republication permission, write to
Copyright and Permissions Dept., IEEE Publications Administration, 445 Hoes Ln., PO Box 1331, Piscataway, NJ 08855-1331. Copyright © 2002 by the
Institute of Electrical and Electronics Engineers Inc. All rights reserved.

